Production of crude less extra-heavy oil in Venezuela

Extra-heavy oil (Orinoco) was discovered between 1936 and 1939 with 4 fields (in fact they are called not field, but area being a continuous-type accumulation) for a total of 215 Gb. Their names were changed from Hamaca, Zuata, Cerro Negro and Machete to now Ayacucho, Junin, Carabobo and Boyaca.

The creaming curve (cumulative discovery versus cumulative number of fields) at end 2010 for crude oil less extra-heavy can be modeled with 4 cycles towards an ultimate of 110 Gb. Figure 1: Venezuela oil excluding extra-heavy and natural gas creaming curve 1883-2010

The cumulative discovery of oil excluding extra-heavy versus time is compared to the cumulative production of oil excluding extra-heavy (60 Gb at end 2010), but also the extra-heavy, which looks negligible (0.27 Gb at end 2010). The past production seems difficult to extrapolate towards the ultimate of 110 Gb from reported discovery past discovery. Figure 2: Venezuela crude excluding extra-heavy oil cumulative discovery "& cumulative production, with also extra-heavy curve

Chavez's nationalization has disturbed the production of extra-heavy oil and the forecast from PDVSA (Voigt) are quite different from EIA/IEO & IEA/WEO:

Figure 3: Venezuela Orinoco extra-heavy oil production & forecasts from PDVSA, EIA/IEO & IEA/WEO

The Hubbert linearization of the past production for crude oil excluding extra-heavy displays several trends: the first from 1952 to 1987 trends towards 45 Gb and the second from 1997 to 2011 trends towards 65 Gb. Oil production Hubbert linearization is not much reliable, but OPEC reserves are not either.

Figure 4: Venezuela oil excluding extra-heavy production: Hubbert linearization 1917-2011

The first problem is the lack of reliable data: PDVSA reports only the production and reserves of their main fields on annual reports (*informe de gestion*) since 2000.

The second problem is that the main part of past production is from the Maracaibo basin (63 Gb discovery and 42 Gb produced) with in particular the supergiant Bolivar Coastal gathering 3 fields: Lagunillas discovered in 1926 U= 10 Gb, Tia Juana discovered in 1928 U= 18 Gb and Bachaquero discovered in 1930 U = 11 Gb.

Trapping is stratigraphic involving unconformities and tar plugging. Few millions year from now and Maracaibo will be like Orinoco!

The following map from the Petroleum Economist Atlas for Maracaibo shows that the fields are connected, leading to confusion with data by field.

Figure 5: Maracaibo oil fields location map

These 3 fields, which the 2P reserves are 39 Gb, have already produced 28 Gb, but the production is on still decline from the known data (1991-2010). These fields were operated by Maraven (backed by Shell people), subsidiary of PDVSA which ceased to exit in 1997. In AAPG study in geology #25 1984 Roadifer reported giants listed by oil in place and Bolivar Coastal Lagunillas was third with 160 Gb behind Greater Burgan and Ghawar both with 190 Gb.

In 1994 Bolivar Coastal (Laherrere, Perrodon, Demaison 1994) was reported the third largest field with 34.5 Gb ultimate and 25 Gb for cumulative production.

In AAPG 2005 (Horn) the Bolivar Coastal Complex was reported with ultimate of 28.8 Gb with Tia Juana 13.4 Gb, Bachaquero 9 Gb and Lagunillas 6.4 Gb.

But production data from other sources (Maraven, OGJ) could report chaotic values because confusion between the complex and the connected fields (Cabimas 1917, Lama 1957, Ceuta 1957, even Mene Grande 1914). The density of the fields also varies, but Bolivar Coastal is heavy (Tia Juna 17.9°API OGJ 1990 and 25°API OGJ 2001, Bachaquero & Lagunillas 22°API).

The Bolivar Coastal complex oil production data is only complete since 1991 but with cumulative production, which allows to plot the oil decline versus cumulative production. The decline since 1997 (peak at 322 Mb) is very sharp, too sharp to be due only to below ground constraints. 1997 is the end of the previous operator Maraven and the fight between Chavez and PDVSA staff must be one reason for sharp decline.

The production from Tertiary sandstones is heavy, at fairly shallow depth (1000 m), needing steam injection, expensive investments and competent engineers.

Figure 6: Bolivar Coastal Complex (Lagunillas +Tia Juana + Bachaquero) oil decline

A straight extrapolation could lead to an ultimate of 30 Gb or 8 Gb less than estimated, but the decline of production could come from above ground constraints with PDVSA. The first concession in Venezuela was in 1865 and 14 companies were operating when in 1976 the nationalization reduced the number to four companies associated with the Venezuelan national company CVP and PDVSA backed by international companies: Lagoven (Exxon) Maraven (Shell), Meneven (Gulf) & Corpoven. In 1997 all these subsidiaries were taken over by PDVSA, but with different departments. The Maracaibo operations is run by PDVSA/Zulia

One of the early above ground problems was subsidence of the surface because of production. The large production has caused a subsidence of the surface of several meters since the start of production: "Subsidence Due to Fluid Withdrawal" G.V. Chilingar et al editors 1995 http://books.google.fr/books?id=q3hBXavOfYwC&pg=PA347&lpg=PA347&dq=Bachaquero+Bolivar+Lagunill as+Tia+Juana+oil+production&source=bl&ots=hvKTQqdpvB&sig=rzoHf-DP4Tjk_wV-jRumDKYUaR8&hl=fr Figure 7: Bolivar Coastal Complex surface subsidence for Bachaquero & Lagunillas

Fig. 7-6. Subsidence history and prediction along the Bachaquero dike.

Fig. 7-7. Subsidence history along the Lagunillas dike.

Figure 8: Bolivar Coastal Complex surface subsidence map

A. FINOL AND Z.A. SANCEVIC

Fig. 7-8. Main levelling network and subsidence contours, 1986.

The 1991 USGS report 39 $\rm http://pubs.usgs.gov/cp/39/report.pdf$ has a map showing the connection between fields

Figure 9: Bolivar Coastal Complex map from USGS 1991

Figure 7.—Giant Bolivar Coastal Field (shaded), estimated ultimate recovery of 35,000 million barrels of oil, Maracaibo Basin, Venezuela. Figura 7.—El Campo Costero de Bolivar, un campo gigante petrólero con una recuperación última estimada de 35.000 millones de barriles, Cuenca de Maracaibo, Venezuela.

and also the cumulative production and ultimates: Figure 10: South America: Giant fields ultimates and cumulative production from USGS 1991

Table 10.--Giant oil and gas fields (estimated ultimate recovery of more than 500 MMB and (or) 3 TCF)

Tabla 10.—Campos gigante de petróleo y gas (recuperación final estimada mayor de 500 millones de barriles y (o) 3 trillones de pies cúbicos de gas)

					Major reservoir		Cumulative production (as of 12-31-87)		Estimate ultimate recovery		
	-		Year			Average	-				
Field name	Country	Basin	discovered	Age	Lithology	depth (Pt)	Type of trup	MMB	TCF	MMB	TCF
South Flank	Argentina	San Jorge	1946	Jurassic/	Sandstone	1600-8500	Fault block	680		816	530
North Flank Group	Argentina	San Jorge	1907	Cretaceous/	Sandstone	2000-	Fault block	568		842	79
Loma de la Lata	Argentina	Neuquen	1977	Cretaceous	Limestone	5200-7200	Stratigraphic,	30		500	
Loma de la Lata	Argentina	Neuquen	1977	Jurassic	Sandstone	6200-8200	Stratigraphic,		0.6		12
Punta Bardas/	Argentina	Cayo	1961	Triassic/	Sandstone	7200-8000	Anticline	338		500	
La Cira-Infantas	Colombia	Middle	1925	Cretaceous/	Sandstone	3250	Anticline	459		520	
Caño Limón	Colombia	Armica	1983	Cretaceous/	Sandstone	7500-8200	Fault block	108		1000	
Shushufindi	Ecuador	Oriente	1969	Cretaceous	Sandstone	7500-8900	Anticline	495		1350	
Sacha	Ecuador	Oriente	1969	Cretaceous	Sandstone	7800-9300	Anticline	338		743	
Amistad	Ecuador	Progreso	1970	Tertiary(7)	Sandstone		Anticline				3
La Brea - Parinas	Peru	Talara	1869	Tertiary	Sandstone conglomente	5500	Fault blocks	539		592	
San Martin	Peru	Ucayali	1984	Cretaceous	Sandstone	12,800	Anticline				3
Cashiriari	Peru	Ucayali	1986	Cretaceous	Sandstone	8800	Anticline				8
Pyzabad Group	Trinidad	South Basin	1913	Tertiary	Sandstone	3000-8000	structural	630		850	
Soldado	Trinidad	South Basin	1954	Tertiary	Sandstone	4000-8000	structural	463		600	•••
East Coast	Trinidad	S.E. Coast	1961	Tertiary	Sandstone	5000- 11,000	structural	555		700	
Galeota Group	Trinidad	Galeota	1968	Tertiary	Sandstone	8000- 14,000	Stratigraphic, structural		5.0		7
North Coast Group	Trinidad	W. Tobago	1971	Tertiary	Sandstone	11,000	Stratigraphic, structural		nil		3
Tia Junna	Venezuela	Maracaibo	1928	Tertiary	Sandstone	3500	Stratigraphic fault	10,360		15,050	
Bachagero	Venezuela	Maracaibo	1930	Tertiary	Sandstone	3450	Stratigraphic fault	6264		9367	
Lagunillas	Venezuela	Maracaibo	1926	Tertiary	Sandstone	3000	Stratigraphic fault	3462		5220	
Lama	Venezuela	Maracaibo	1957	Cretaceous/ Tertiary	Sandstone	10,000	Stratigraphic fault	2140		2850	
Ceuta	Venezuela	Maracaibo	1956	Cretaceous/ Tertiary	Sandstone		Stratigraphic fault	505		1239	
Cabimas	Venezuela	Maracaibo	1917	Tertiary	Sandstone	2200	Stratigraphic fault	489		515	
Boscán	Venezuela	Maracaibo	1946	Tertiary	Sandstone	8800	Anticline, stratigraphic	729		2471	
Urdancta	Venezuela	Maracaibo	1956	Cretaceous/ Tertiary	Sandstone	10,000	Anticline, stratigraphic	122		2058	
Centro	Venezuela	Maracaibo	1957	Cretaceous/ Tertiary	Sandstone	10,000	Anticline, stratigraphic	777		1702	
Lamar	Venezuela	Maracaibo	1958	Cretaceous/ Tertiary	Sandstone	12,500	Anticline, stratigraphic	1095		1594	
La Paz	Venezuela	Maracaibo	1925	Cretaceous/ Tertiary	Sandstone	11,400	Faulted	857		1042	
Mene Grande	Venezuela	Maracaibo	1914	Tertiary	Sandstone	8000	Faulted	637		686	
Santa Rosa	Venezuela	Oriental	1941	Tertiary	Sandstone	10,600	Faulted	390		697	
Mata	Venezuela	Oriental	1954	Tertiary	Sandstone	9500	Faulted	469		648	
Guara	Venezuela	Oriental	1946	Tertiary	Sandstone	7800	Faulted	424		606	
Oficina	Venezuela	Oriental	1917	Tertiary	Sandstone	6900	Fault block	384		525	
Cerro Negro	Venezuela	Orinoco	1979	Tertiary	Sandstone		Stratigraphic	20		11,183	
San Diego	Venezuela	Orinoco		'						4557	
Iguana	Venezuela	Orinoco	1054			-				4176	
Morishal	Venezuela	Orinoco	1956					267		1453	
Santa Clara	Venezuela	Orinoco	1958			3300		169		940	
Quiriquire	Venezuela	Oriental	1928	Cretaceous/	Sandstone	7000	Stratigraphic	760		885	
Uverito	Venezuela	Orinoco	1981	Tertiary	Sandstone			1		854	
Bare	Venezuela	Orinoco			Sandstone			8		763	
Sur	Venezuela	Orinoco		Cretaceous/ Tertiary	Sandstone	14,000	Stratigraphic	-		602	
Melones	Venezuela	Orinoco	1934	Tertiary	Sandstone	5200	Faulted	114		600	
Arecuna	Venezuela	Orinoco			Sandstone					567	
El Purrial	Venezuela	Oriental	1985	Tertiary	Sandstone		Fault block	8	0.3	529	

[MMB, million barrels; TCF, trillion cubic feet; ---, no data. See figures 3 and 4 for location of selected basins and fields]

Lagunillas cumulative production (end 1990?) is only 3.4 Gb when it is 11.2 Gb for OGJ 1991 (obviously wrong by 5 Gb) and 2.1 Gb from Maraven 1997 http://www.worldenergy.org/documents/congresspapers/P001165.pdf

Maraven ultimate at 2.9 Gb is wrong! Figure 11: Maracaibo fields reserves & cumulative production from Maraven 1997

 Table 3
 Cases Of Emblematic Fields In The Maracaibo Basin (Western Region Of The Country) That Have Produced More Than 50% Of Their Recoverable Reserves

FIELD	RECOVERABLE RESERVES	CUMULATIVE PRODUCTION	% PRODUCED	REMAINING RESERVES							
Bachaquero (1930)	2,172.476	1,691.712	77.9	480.764							
Cabimas (La Rosa 1917)	391.844	364.783	93.1	27.061							
La Concepción (1925)	188.927	146.194	77.4	42.733							
La Paz (1923)	1,045.132	885.713	84.7	159.419							
Lagunillas (1926)	2.918.529	2.108.065	72.2	810.464							
Mene Grande (1914)	755.135	657.660	87.1	97.475							
Tía Juana (1928)	2,392.787	1,775.431	74.2	617.356							
Totals	9.864.830	7.629.558	77.3	2,235.272							

Source: Maraven S.A. Reserves Annual Report, 1997 & Author calculations

Figure 12: Lagunillas oil decline from different sources (incomplete data)

Another check on the field oil reserves data is with the El Furrial field discovered in 1986 with ultimate reported at 3.7 Gb with fairly production data (except for OGJ 1997) with a cumulative production at 2.8 Gb at end 2010. The present production (run by PDVSA/Monogas) is on a plateau since 1998 and the ultimate looks reasonable. The oil decline is yet-to-come and the comparison with the Bolivar Coastal Complex shows that decline is not only due to PDVSA staff decline! Figure 13: El Furrial oil decline 1986-2011

The Venezuela crude excluding extra-heavy oil discovery leads to a 110 Gb ultimate, being too high compared to the present cumulative production, but future production depends also on the investments, the economy and the policy of the country.

The discrepancy between the extrapolation of discovery and production is hard to solve. The comparison of the reserves estimates by different sources does not help. The remaining reserves are reported as proved by OGJ (recopied by USDOE/EIA) after an enquiry upon the national agencies, by World Oil magazine (stopped in 2009) and BP (reporting Orinoco separately) and they differ completely with the 2P from scout database. There is a first political rise in 1986 with the OPEC fight on quotas (based on oil reserves) started by Kuwait large reserves increase.

It is strange to see that Venezuela proved reserves increases sharply when oil production decreases sharply! But maybe not if it is political!

Figure 15: Venezuela remaining oil reserves from different sources

Venezuela proved reserves increases sharply in 2010 by including extra-heavy oil is late compared to Canada increase in 2002, when before OGJ was reporting only conventional oil. Figure 16: OPEC & Canada oil proved reserves from OGJ

To conclude, it is hard to choose an ultimate for Venezuela crude oil **excluding extra-heavy**, so the best is to use 70 Gb, 90 Gb and 110 Gb

Figure 17: Venezuela crude excluding extra-heavy oil annual production & forecasts, with also extra-heavy production

The 110 Gb ultimate seems too high, needing a huge effort to improve the recovery on the heavy oil fields. The 90 Gb ultimate seems the most likely.

The potential of Venezuela crude excluding extra-heavy oil production, which is on a steep decline since 1997, is such that the decline can be slowed down or even reversed if PDVSA recovers competence, investment and international partners.

Better transparency in the data is also necessary.