## Fossils Fuels Ultimate Recovery Appraisal, Clue to Climate Change Modelling

B.Durand\* & J.Laherrère\*\*

- \* Fossil Fuels Geochemist, former Director of ENS de Géologie
- \*\* Geophysicist, former Director of Exploration Techniques, Total



- According to ICCP 2013\*, temperature increase of the Earth's surface depends nearly linearly on cumulative anthropogenic CO<sub>2</sub> emissions from 1870.
- Representative concentration pathways (RCP) scenarios produce, in GtC contained in 1870-2100 CO, emissions :
- 790 GtC for RCP 2,6 1250 GtC for RCP 4,5
- 1420 GtC for RCP 6 2100 GtC for RCP 8,5
- So as temperature increase from 1870 to 2100 to stay below 2°C, these emissions should not exceed approximately 830 GtC, i.e a little bit more than emissions of RCP 2,6.
- Because it makes up 80 % of  ${\rm CO_2}$  anthropogenic emissions, consumption of fossil fuels should be the main driver of climatic change.
- \* The Physical Basis, Summary for Policymakers, figure SPM.10



- Since emissions by fossil fuel consumption makes up 80 % of CO<sub>2</sub> anthropogenic sources, it should be, according to ICCP, the main driver of the Earth's surface temperature increase.
- However availability of FF is limited by geology and their production must peak some time.
- Here is the example of United Kingdom:
- All Peaks of fossil fuels indigenous productions have been already largely passed:
- 1913 for coal,
- 1999 for oil,
- 2000 for gas!



- All fossil fuels indigeneous productions have also already peaked in EU 28 +Norway:
- - 1982 for coal
- - 2000 for oil
- - 2004 for gas
- Neither technological improvments nor high market prices succeeded in reversing the trend once the peaks passed!



- World production of fossil fuels is estimated (see methods) to peak in 2025, largely before the middle of the century:
- 2020 for oil (total liquids),
- 2030 for gas,
- 2050 for coal.
- Methods: estimations of ultimates from creaming curves construction of 2 P (technical) reserves and/or Hubbert linearization of productions histories, then the use of logistic curves to predict the productions to come (without above the ground constraints).
- This fossil fuels ultimate recovery appraisal can easily be translated in ultimate CO<sub>2</sub> emissions from fossil fuels consumption.

## Methods: examples of creaming curves and of Hubbert's linearization of production





- Best guess for ultimate recovery of fossil fuels is 1500 Gtoe, corresponding to 1300 GtC (4800 GtCO2), whose 1100 GtC would be emitted from 1870 to 2100.
- This is less than fossil fuel emissions of RCP 4,5 (1250 GtC).



## Conclusions

Best guess for fossil fuel emissions from 1870 to 2100 is below prediction of RCP 4,5 for that period and roughly 300 GtC above the 2°C limit.

There is a large uncertainty in these results. Nevertheless RCP 8,5 looks irrelevant and RCP 6 unlikely. The same conclusion was reached by Mohr et al. 2015, Fuel,141, 120-135.

Uncertainty comes mostly from coal ultimate appraisal, and coal will be very soon the main responsible for CO<sub>2</sub> emissions.

 Therefore future of climate, according to ICCP physical modelling, is mostly in the hands of the main coal consuming countries.

## See below the 10 main responsibles

